Retroceder   TwistedAndes > Off Topic > Camping Offroad

Camping Offroad Equipamiento, consejos, ideas, y todo lo necesario para acampar en las salidas offroad.

Respuesta
 
Herramientas
Antiguo 14-04-2008, 18:37:06   #111
saggcl
Senior Member
Top 1000
 
Avatar de saggcl
 
Fecha de Ingreso: Oct 2007
Ubicación: Santiago
Edad: 46
Mensajes: 3.314
Contactar a saggcl a través de Yahoo
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

AQUI CONTINUA

History

[edit] Early inverters

From the late nineteenth century through the middle of the twentieth century, DC-to-AC power conversion was accomplished using rotary converters or motor-generator sets. In the early twentieth century, vacuum tubes and gas filled tubes began to be used as switches in inverter circuits. The most widely used type of tube was the thyratron.
The origins of electromechanical inverters explain the source of the term inverter. Early AC-to-DC converters used an induction or synchronous AC motor direct-connected to a generator (dynamo) so that the generator's commutator reversed its connections at exactly the right moments to produce DC. A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip rings at one end and a commutator at the other and only one field frame. The result with either is AC-in, DC-out. With an M-G set, the DC can be considered to be separately generated from the AC; with a synchronous converter, in a certain sense it can be considered to be "mechanically rectifed AC". Given the right auxiliary and control equipment, an M-G set or rotary converter can be "run backwards", converting DC to AC. Hence an inverter is an inverted converter.[3][4]

[edit] Controlled rectifier inverters

Since early transistors were not available with sufficient voltage and current ratings for most inverter applications, it was the 1957 introduction of the thyristor or silicon-controlled rectifier (SCR) that initiated the transition to solid state inverter circuits.

12-pulse line-commutated inverter circuit


The commutation requirements of SCRs are a key consideration in SCR circuit designs. SCRs do not turn off or commutate automatically when the gate control signal is shut off. They only turn off when the forward current is reduced to zero through some external process. For SCRs connected to an AC power source, commutation occurs naturally every time the polarity of the source voltage reverses. SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required. The least complicated SCR circuits employ natural commutation rather than forced commutation. With the addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above.
In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode. In the inversion mode, a controlled rectifier circuit operates as a line commutated inverter. This type of operation can be used in HVDC power transmission systems and in regenerative braking operation of motor control systems.
Another type of SCR inverter circuit is the current source input (CSI) inverter. A CSI inverter is the dual of a six-step voltage source inverter. With a current source inverter, the DC power supply is configured as a current source rather than a voltage source. The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a stepped current waveform. CSI inverter commutation methods include load commutation and parallel capacitor commutation. With both methods, the input current regulation assists the commutation. With load commutation, the load is a synchronous motor operated at a leading power factor.
As they have become available in higher voltage and current ratings, semiconductors such as transistors that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits.

[edit] Rectifier and inverter pulse numbers

Rectifier circuits are often classified by the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage. A single-phase half-wave rectifier is a one-pulse circuit and a single-phase full-wave rectifier is a two-pulse circuit. A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit.[5]
With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings. The rectifier inputs are supplied from special transformers that provide phase shifted outputs. This has the effect of phase multiplication. Six phases are obtained from two transformers, twelve phases from three transformers and so on. The associated rectifier circuits are 12-pulse rectifiers, 18-pulse rectifiers and so on.
When controlled rectifier circuits are operated in the inversion mode, they would be classified by pulse number also. Rectifier circuits that have a higher pulse number have reduced harmonic content in the AC input current and reduced ripple in the DC output voltage. In the inversion mode, circuits that have a higher pulse number have lower harmonic content in the AC output voltage waveform.
saggcl está offline   Responder Con Cita
Antiguo 15-04-2008, 11:36:14   #112
padillage
Member
Top 500
 
Avatar de padillage
 
Fecha de Ingreso: Oct 2004
Ubicación: Ensenada, Puerto Varas
Edad: 49
Mensajes: 896
Contactar con padillage a través de MSN
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

Cita:
Empezado por saggcl Ver Mensaje
Pero los 280W son a 220v(NO 12v), que en amperes son 1,2727 por hora, como el inversor no es 100% eficiente en la transformacion de 12v a 220v, supongamos que consume 5 amper por hora por lo que una bateria de 70 amperes en este supuesto te duraria 14 horas

Seria interesante si alguien conoce alguna formula para calcular el consumo, considerando lo que se entrega y la eficiencia del equipo
ahora si me enrede mas en la conversion ya que siempre la habia hecho asi.......
pero con el inverson tu aumentas voltaje no potencia, la potencia te la da la bateria que sigue trabajando en doce.....
o no??
padillage está offline   Responder Con Cita
Antiguo 15-04-2008, 11:55:27   #113
saggcl
Senior Member
Top 1000
 
Avatar de saggcl
 
Fecha de Ingreso: Oct 2007
Ubicación: Santiago
Edad: 46
Mensajes: 3.314
Contactar a saggcl a través de Yahoo
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

Cita:
Empezado por padillage Ver Mensaje
ahora si me enrede mas en la conversion ya que siempre la habia hecho asi.......
pero con el inverson tu aumentas voltaje no potencia, la potencia te la da la bateria que sigue trabajando en doce.....
o no??
Lo que importa es el amperaje

W=A*V

Saludos
saggcl está offline   Responder Con Cita
Antiguo 15-04-2008, 12:00:31   #114
saggcl
Senior Member
Top 1000
 
Avatar de saggcl
 
Fecha de Ingreso: Oct 2007
Ubicación: Santiago
Edad: 46
Mensajes: 3.314
Contactar a saggcl a través de Yahoo
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

Inverter output waveforms

The switch in the simple inverter described above produces a square voltage waveform as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply. Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves. The sine wave that has the same frequency as the original waveform is called the fundamental component. The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental frequency.
The quality of the inverter output waveform can be expressed by using the Fourier analysis data to calculate the total harmonic distortion (THD). The total harmonic distortion is the square root of the sum of the squares of the harmonic voltages divided by the fundamental voltage:

The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load. Some loads need a nearly perfect sine wave voltage supply in order to work properly. Other loads may work quite well with a square wave voltage.

[edit] More advanced inverter designs


H-bridge inverter circuit with transistor switches and antiparallel diodes


There are many different power circuit topologies and control strategies used in inverter designs. Different design approaches address various issues that may be more or less important depending on the way that the inverter is intended to be used.
The issue of waveform quality can be addressed in many ways. Capacitors and inductors can be used to filter the waveform. If the design includes a transformer, filtering can be applied to the primary or the secondary side of the transformer or to both sides. Low-pass filters are applied to allow the fundamental component of the waveform to pass to the output while limiting the passage of the harmonic components. If the inverter is designed to provide power at a fixed frequency, a resonant filter can be used. For an adjustable frequency inverter, the filter must be tuned to a frequency that is above the maximum fundamental frequency.
Since most loads contain inductance, feedback rectifiers or antiparallel diodes are often connected across each semiconductor switch to provide a path for the peak inductive load current when the switch is turned off. The antiparallel diodes are somewhat similar to the freewheeling diodes used in AC/DC converter circuits.
Fourier analysis reveals that a waveform, like a square wave, that is antisymmetrical about the 180 degree point contains only odd harmonics, the 3rd, 5th, 7th etc. Waveforms that have steps of certain widths and heights eliminate or “cancel” additional harmonics. For example, by inserting a zero-voltage step between the positive and negative sections of the square-wave, all of the harmonics that are divisible by three can be eliminated. That leaves only the 5th, 7th, 11th, 13th etc. The required width of the steps is one third of the period for each of the positive and negative voltage steps and one sixth of the period for each of the zero-voltage steps.
Changing the square wave as described above is an example of pulse-width modulation (PWM). Modulating, or regulating the width of a square-wave pulse is often used as a method of regulating or adjusting an inverter's output voltage. When voltage control is not required, a fixed pulse width can be selected to reduce or eliminate selected harmonics. Harmonic elimination techniques are generally applied to the lowest harmonics because filtering is more effective at high frequencies than at low frequencies. Multiple pulse-width or carrier based PWM control schemes produce waveforms that are composed of many narrow pulses. The frequency represented by the number of narrow pulses per second is called the switching frequency or carrier frequency. These control schemes are often used in variable-frequency motor control inverters because they allow a wide range of output voltage and frequency adjustment while also improving the quality of the waveform.
Multilevel inverters provide another approach to harmonic cancellation. Multilevel inverters provide an output waveform that exhibits multiple steps at several voltage levels. For example, it is possible to produce a more sinusoidal wave by having split-rail direct current inputs at two voltages, or positive and negative inputs with a central ground. By connecting the inverter output terminals in sequence between the positive rail and ground, the positive rail and the negative rail, the ground rail and the negative rail, then both to the ground rail, a stepped waveform is generated at the inverter output. This is an example of a three level inverter: the two voltages and ground. [2]

[edit] Three phase inverters


3-phase inverter with wye connected load


Three-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission. A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals. For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform. This creates a line-to-line output waveform that has six steps. The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above. When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled.

3-phase inverter switching circuit showing 6-step switching sequence and waveform of voltage between terminals A and C



To construct inverters with higher power ratings, two six-step three-phase inverters can be connected in parallel for a higher current rating or in series for a higher voltage rating. In either case, the output waveforms are phase shifted to obtain a 12-step waveform. If additional inverters are combined, an 18-step inverter is obtained with three inverters etc. Although inverters are usually combined for the purpose of achieving increased voltage or current ratings, the quality of the waveform is improved as well.
saggcl está offline   Responder Con Cita
Antiguo 15-04-2008, 12:02:24   #115
saggcl
Senior Member
Top 1000
 
Avatar de saggcl
 
Fecha de Ingreso: Oct 2007
Ubicación: Santiago
Edad: 46
Mensajes: 3.314
Contactar a saggcl a través de Yahoo
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

LO QUE ME FALTO AYER



Inverter applications

The following are examples of inverter applications.

[edit] DC power source utilization


Inverter designed to provide 115 VAC from the 12 VDC source provided in an automobile


An inverter converts the DC electricity from sources such as batteries, solar panels, or fuel cells to AC electricity. The electricity can then be used to operate AC equipment such as those that are plugged in to most house hold electrical outlets.

[edit] Uninterruptible power supplies

One type of uninterruptible power supply uses batteries to store power and an inverter to supply AC power from the batteries when main power is not available. When main power is restored, a rectifier is used to supply DC power to recharge the batteries. A UPS is a device which supplies the stored electrical power to the load in case of raw power cut-off or Blackout.

[edit] Induction heating

Inverters convert low frequency main AC power to a higher frequency for use in induction heating. To do this, AC power is first rectified to provide DC power. The inverter then changes the DC power to high frequency AC power.

[edit] High-voltage direct current (HVDC) power transmission

With HVDC power transmission, AC power is rectified and high voltage DC power is transmitted to another location. At the receiving location, an inverter in a static inverter plant converts the power back to AC.

[edit] Variable-frequency drives

Main article: variable-frequency drive
A variable-frequency drive controls the operating speed of an AC motor by controlling the frequency and voltage of the power supplied to the motor. An inverter provides the controlled power. In most cases, the variable-frequency drive includes a rectifier so that DC power for the inverter can be provided from main AC power. Since an inverter is the key component, variable-frequency drives are sometimes called inverter drives or just inverters.

[edit] Electric vehicle drives

Adjustable speed motor control inverters are currently used to power the traction motor in some electric locomotives and diesel-electric locomotives as well as some battery electric vehicles and hybrid electric highway vehicles such as the Toyota Prius. Various improvements in inverter technology are being developed specifically for electric vehicle applications.[1] In vehicles with regenerative braking, the inverter also takes power from the motor (now acting as a generator) and stores it in the batteries.

[edit] Inverter circuit description


Simple inverter circuit shown with an electromechanical switch and with a transistor switch



[edit] Basic inverter designs

In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding. A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other. The alternation of the direction of current in the primary winding of the transformer produces alternating current (AC) in the secondary circuit.
The electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact. The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact. The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth. This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios. A similar mechanism has been used in door bells, buzzers and tattoo guns.
As they have become available, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs.

Square waveform with fundamental sine wave component, 3rd harmonic and 5th harmonic
saggcl está offline   Responder Con Cita
Antiguo 16-07-2008, 18:04:00   #116
alexisespindola
Newbie
Newbie
 
Fecha de Ingreso: Apr 2008
Mensajes: 1
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

hola soy nuevo e este foro pero quisiera saber si alguien sabe si los isoleitor se pueden reparar de lo contrario si saben donde se puede conseguir uno,ya que tengo uno e elvehiculo pero no funciona y me come las dos baterias es una wolswagen tempolibero similar a la westfalia si alguien sabe agradecere el dato
alexisespindola está offline   Responder Con Cita
Antiguo 16-07-2008, 19:14:22   #117
saggcl
Senior Member
Top 1000
 
Avatar de saggcl
 
Fecha de Ingreso: Oct 2007
Ubicación: Santiago
Edad: 46
Mensajes: 3.314
Contactar a saggcl a través de Yahoo
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

Cita:
Empezado por alexisespindola Ver Mensaje
hola soy nuevo e este foro pero quisiera saber si alguien sabe si los isoleitor se pueden reparar de lo contrario si saben donde se puede conseguir uno,ya que tengo uno e elvehiculo pero no funciona y me come las dos baterias es una wolswagen tempolibero similar a la westfalia si alguien sabe agradecere el dato
Bienvenido

Un electrico te puede diagnosticar y eventualmente reparar un isolador.

Hace años compre un isolador en el Off Road Center, en donde venden productos para nautica puede que encuentres como Tecnomar, puedes preguntar tambien en la Casa Royal, Casa Musa, en los locales de San Diego con Av Matta

Saludos
saggcl está offline   Responder Con Cita
Antiguo 16-08-2008, 12:47:26   #118
lcolavarria
Newbie
Newbie
 
Fecha de Ingreso: Aug 2008
Mensajes: 1
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

Gonzalo necesito saber cuanto me sale un equipo eolico de 1kw a 2kw completo para ancud..
lcolavarria está offline   Responder Con Cita
Antiguo 18-08-2008, 11:03:51   #119
padillage
Member
Top 500
 
Avatar de padillage
 
Fecha de Ingreso: Oct 2004
Ubicación: Ensenada, Puerto Varas
Edad: 49
Mensajes: 896
Contactar con padillage a través de MSN
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

Cita:
Empezado por lcolavarria Ver Mensaje
Gonzalo necesito saber cuanto me sale un equipo eolico de 1kw a 2kw completo para ancud..
te envie PM
padillage está offline   Responder Con Cita
Antiguo 19-12-2008, 01:29:02   #120
MacMarquez
Senior Member
Top 5000
 
Fecha de Ingreso: Feb 2003
Ubicación: Las Condes, Santiago, Chile
Edad: 52
Mensajes: 7.715
Contactar con MacMarquez a través de ICQ Enviar un mensaje a través de AIM a MacMarquez Contactar con MacMarquez a través de MSN Contactar a MacMarquez a través de Yahoo
Predeterminado Re: Experiencia con INVERSORES 12v a 220v

volviendo a este tema, encontre este :

http://articulo.mercadolibre.cl/MLC-...-350-watts-_JM

la idea es hacer algo asi:

http://www.yotatech.com/f123/install...r-pics-108864/

Saludos y espero sus comentarios !!
MacMarquez está offline   Responder Con Cita
Respuesta

Compartir en Redes Sociales


Normas de Publicación
Tu no puedes publicar nuevos temas
Tu no puedes publicar respuestas
Tu no puedes adjuntar archivos
Tu no puedes editar tus posts

Codigo BB is habilitado
Las caritas están habilitado
Código [IMG] está habilitado
Código HTML está deshabilitado

Saltar a Foro


La franja horaria es GMT -3. Ahora son las 14:40:55.


Powered by: vBulletin, Versión 3.8.11
Derechos de Autor ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright Twisted Andes. Todos los derechos reservados.